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Evolution of Algorithms and Machines

Idealized speedup of solvers for 3D Poisson Equation 643 grid

Adapted from Deville, Fischer & Mund
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What is scalable?

Solve more difficult problems

At increased resolution
Image by Duffy

Efficiently as the number of
processors increase

Image by Donzis
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Fluid Model

Steady Incompressible Navier-Stokes Equations

− 1
Re∇

2~u + (~u · ∇)~u +∇p = f
∇ · ~u = 0

in Ω

~u = ~uD on ∂ΩD, ν
∂~u
∂n

− ~np = 0 on ∂ΩN .
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Spectral Element Method

The solution is expressed via a nodal basis on each element

uN
e (x , y) =

N+1∑
i=1

N+1∑
j=1

uijπi(x)πj(y).
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Discrete Nonlinear Block System

[
N(u) −DT

−D 0

](
u
p

)
=

(
Mf
0

)

N(u) - Nonlinear Convection-Diffusion
DT - Gradient
D - Divergence
M - Identity Matrix
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Overview
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Block Preconditioner [4]

Picard Linearization & use upper block of LU factorization[
F −DT

−D 0

]
︸ ︷︷ ︸

A

=

[
I 0

−DF−1 I

] [
F −DT

0 −S

]

Approximate F and S to make computationally efficient [2]

[
F̄ −DT

0 −Ŝ

]
︸ ︷︷ ︸

P
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Ŝ: Least-Squares Commutator [1]

Idea: Form a commutator ε = Lv∇−∇Lp

εh = (M−1F )(M−1DT )− (M−1DT )(M−1
p Fp)

If εh is small, and we pre-multipy by DF−1M and post-multiply
by F−1

p Mp, then

S = DF−1DT = (DF−1M)(M−1F )(M−1DT ) ≈ DM−1DT FpMp.

Approximate Fp using Least-Squares to minimize εh

Ŝ := (DM−1DT )(DM−1FM−1DT )−1(DM−1DT )

Ŝ−1 = (DM−1DT )−1︸ ︷︷ ︸
Poisson Solve

(DM−1FM−1DT ) (DM−1DT )−1︸ ︷︷ ︸
Poisson Solve
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Ŝ−1 = (DM−1DT )−1︸ ︷︷ ︸
Poisson Solve

(DM−1FM−1DT ) (DM−1DT )−1︸ ︷︷ ︸
Poisson Solve

9 / 16



Motivation Model/Discretization Solution Algorithm Results Close
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Ŝ−1 = (DM−1DT )−1︸ ︷︷ ︸
Poisson Solve

(DM−1FM−1DT ) (DM−1DT )−1︸ ︷︷ ︸
Poisson Solve

9 / 16



Motivation Model/Discretization Solution Algorithm Results Close

Structure of F block

F e
x = ε(M̂ ⊗ Â) + W e

x (M̂ ⊗ Ĉ)
F e

y = ε(Â⊗ M̂) + W e
y (Ĉ ⊗ M̂)

F = Fx + Fy


F 1

II 0 . . . 0 F 1
IΓ

0 F 2
II 0 . . . F 2

IΓ
...

. . . . . . . . .
...

0 0 . . . F E
II F E

IΓ
0 0 . . . 0 FS




uI1

uI2

...
uIE

uΓ

 =


b̂I1

b̂I2

...
b̂IE

gΓ
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F̄ : Exploit Tensor Product Structure [3]


F̄ 1

II 0 . . . 0 F̄ 1
IΓ

0 F̄ 2
II 0 . . . F̄ 2

IΓ
...

. . . . . . . . .
...

0 0 . . . F̄ E
II F̄ E

IΓ
0 0 . . . 0 F̄S



F̄S =
∑E

e=1(F̄
e
ΓΓ − F̄ e

ΓI F̄ e
II
−1 F̄ e

IΓ)

F̄ e
II = M̂ ⊗ F̂x + F̂y ⊗ M̂

F̄ e−1
II = M̃(Vy ⊗ Vx)(Λy ⊗ I + I ⊗ Λx)−1(V−1

y ⊗ V−1
x )M̃︸ ︷︷ ︸

Diagonalized via 1D operators!
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Nonlinear Solver/Polynomial Degree case study:
Kovasznay Flow

N Picard Linear F̄−1 Ŝ−1

steps steps steps steps
4 18 18 6 35
8 21 21 9 109

12 30 21 12 256

N Newton Linear F̄−1 Ŝ−1

steps steps steps steps
4 5 23 6 45
8 5 35 9 146

12 6 45 12 242

E=12, Re=40, F̄ and Ŝ inexact τ = 10−4
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Element & Reynolds number dependence case study:
Lid Driven Cavity

E Newton Linear F̄−1 Ŝ−1

steps steps steps steps
16 5 28 17 47
64 4 24 42 106

256 5 25 115 248
1024 5 31 316 472

N=4, Re=100, F̄ and Ŝ inexact τ = 10−4

Re Newton Linear F̄−1 Ŝ−1

steps steps steps steps
10 4 13 113 200

100 5 25 117 200
1000 6 91 129 200

N=4, E=256, F̄ and Ŝ inexact τ = 10−4
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Review
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Conclusions

Summary
• Development of fast steady flow solver for SEM
• Based on block preconditioner using LSC & DD
• Displays mild dependence on mesh size and Re

Current Work
• Accelerating Ŝ Poisson Solves with DD
• Incorporating Coarse Grid Preconditioner for F̄
• Block Fast Diagonalization for Newton Linearization
• Thermosolutal Convection with Jeff McFadden @ NIST
• Global Climate Models with Kate Evans @ ORNL
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